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Abstract

Constructible numbers are numbers that can obtained using only a straightedge and compass.
This paper seeks to unpack the meaning of that statement. We begin with the lattice of integers, pro-
viding a discrete geometric foundation for exploring which numbers and coordinates can be produced
through successive geometric constructions. We consider some granular questions like constructible
distances between integral lattice points and how restricting our set of tools of the number of uses of
those tools affects our ability to solve and construct. This all culminates with an extension to higher
dimensions and student investigations intended to deepen understanding.

1 Introduction

As mathematics developed in the western world, it slowly shed some of its original geometric motivations
and underpinnings. Thus, many students do not connect “squaring” or “cubing” a quantity with its
geometric interpretation. In this paper, we will look at how various collections of numbers relate to
geometry. In particular, we aim to demonstrate how one can arrive at various real (and complex) numbers

via geometric operations. And we will connect some of these ideas to “solvability.”

The term constructible numbers often refers to enumerated lengths constructible with straightedge
and compass. In their most simple form, these lengths result from a series of intersections of lines and
circles. From a more formal perspective, constructible numbers are often contextualized in the study of
the theory of fields (i.e., number systems that allow addition, subtraction, multiplication, and division by
nonzero elements), a portion of Galois theory commonly investigated in graduate mathematics. For an
overview of constructible numbers for those with some modern algebra background, we recommend [7].

For those more confident in abstract algebra who want a full exposition, we recommend [8].
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Figure 1: Our initial lattice is Z> = {(a,b) | a,b € Z} 2 Z[i] = {a + bi | a,b € Z}.

2 A Rational Discussion

While the investigation of Constructible Numbers typically begins with the points (0, 0) (the origin) and
(1,0), we begin with a whole lattice of points with integer coordinates (see Figure 1). We later note that
one can develop the lattice via compass and straightedge with merely (0,0) and (1, 0) as initial data.

Before we begin “constructing lengths,” we must discuss collections of numbers that make up coor-
dinates of constructible points. To do so, we conveniently identify a point with coordinates (a, b) and the
Complex Number a+bi. This identification allows one to treat the complex numbers, C = {a+bi | a,b €
R}, and the real plane, R? = {(a,b) | a,b € R}, as essentially the same mathematical object. In fact,
representing complex numbers as points in the plane was one of the mathematical innovations that helped
people see the complex numbers as something worthy of study and of practical use, and not just some
“imaginary”” mathematical construct.

Notice that our starting point for number constructions, Z? (points with integer coordinates), is iden-
tified with complex numbers Z[i] = {a + bi | a,b € Z}, called the Gaussian integers. Gauss used this
set of numbers to understand a host of number theory problems.

Beginning with our initial integral lattice, Z2, if we add the straightedge as a tool and start draw-
ing lines, we can build new numbers. We will consider any point where two lines intersect as a new
constructible point.

Question 1 Draw a line through two points with integer coordinates. Then draw another such line that
intersects the first. What coordinates (i.e., Complex Numbers) can be obtained by intersecting a pair of
such lines?

Let us begin with our integral lattice, Z?. Using a straightedge to create vertical and horizontal lines,
we can construct Z? = {(a,b) | a,b € Z}. (Yes. We expected that big yawn. So, we’d better move on.)
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Notice that the line through (a, b) and (a + ¢,b + p) has slope m = p/q. Thus, given any rational
number m € Q = {p/q | p,q € Z and q # 0} and integer b € Z, we can draw the line whose equation is
y = max + b (e.g., use points (0,b) and (0 + ¢, b+ p)). Pick your favorite nonzero rational number m and
draw the lines with equations y = (1/m)z — 1 and y = 0. These intersect when 0 = y = (1/m)z — 1
so that = m. In other words, we can construct (m,0) = m + 0i. Since we also can construct 0 (just
intersect z and y-axes), we can construct al/ rational numbers! (Yes. All of them.) By interchanging the
roles of = and y, we can see that all points (0, m) = 0+ mi are constructible as well. (We encourage you
to experiment with our Lattice Line Intersections tool hyperlinked below in this footnote.")

So, what does this say so far about solvability? Well, not much, other than for integers a and b (with
a # 0), x + b = 01is solvable in Z and ax + b = 0 is solvable in Q. (Ok. Wake up. It gets better soon.)

What if we consider a general point in Q> = Q[i]? This is only slightly trickier. Pick a point in
(p,q) € Q* such that p # 0 (we already know how to construct (0, ¢)). Then we can draw lines whose
equations are y = (q/p)xr and y = ((¢ — 1)/p)z + 1. These lines intersect when (¢/p)xr = y =
((¢g — 1)/p)x + 1. This implies 0 = —x/p + 1 thus © = p. If so, y = (¢/p)p = ¢. In other words,
(p,q) = p+ qi is a point of intersection of a pair of lines constructible from our lattice. In summary,
starting with our integer lattice, we can construct all points with rational coordinates (i.e., Q%) simply by
intersecting pairs of lines.

Notice the converse is true as well. Lines through our lattice points have equations y = mx + b where
m and b are rational. Consider two such equations y = mz + b and y = nx + c. Notice that when solving
these equations our solution, assuming there is one (i.e., our lines are not parallel), (x, y) will be a point
with rational coordinates. In other words, each point in Q? = Q[i] can be constructed by intersecting a
single pair of lines through points in Z? = Z[i| and intersecting such lines only yields such points.

Question 2 Suppose we use Q* = Q[i| as our starting point and start drawing and intersecting lines.
Do we get anything new?

The answer is, “No.” Why? If points in Q? form lines that intersect, they do so at another point
in Q2. Intersecting lines determined by our integer lattice simply lead to points whose coordinates are
rational numbers. We began with a lattice comprised of well-separated integral points, we now have a
dense cloud of all points with rational coordinates. One iteration gets us here, so while we have now
produced an infinite set including all rational numbers, more iterations give us nothing new. (But, we
want something new. We want irrational numbers. But how?) Maybe we should measure distances!

Before we measure distances, what do we have regarding solvability? In summary, whether we begin
with our integer lattice or with all points with rational coordinates, using a straightedge allows us to solve
ar +b =0 (witha,b € Qand a # 0) in Q. (This is something, but not much progress.)

1A Maple™ tool for investigating this process is available at: https://maple.cloud/app/6216295368753152/Lattice+Line+
Intersections?key=E31FA11A660C44BA87EAAO0AA2745D8DEBCFA3A9F566941DBIF993F31B719C92A
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3 A Lengthy Discussion

Let us return to our integral lattice for a moment. Recall that the distance between (1, y;) and (2, y2)
is v/(x1 — 22)2 + (y1 — y2)2. Seeing a square root appear gives us hope of running into some Irrational
Numbers.

Question 3 What numbers represent distances between lattice points in 7.2 ? What about points in Q??

Both questions can be reduced to asking what kinds of distances we can produce between a point and
the origin. Why? Because the distance between (x1,y;) and (z2, y2) is the same as the distance between
(0,0) and (z1 — w2, y1 — y2). Since both collections are closed under taking differences of coordinates,
we can simplify our discussion by beginning at the origin.

Working with our integer lattice and beginning at the origin, we get numbers of the form d =
Va2 + b? where a,b € Z. In other words, d*> = a? + . (Hmm... Pythagoras?) This leads us to
ask what sums of squares of integers look like. In classic number theory, this is a well understood, but
not completely trivial, problem.

Theorem 3.1 An integer m can be expressed as a sum of squares if and only if given any prime factor
congruent to 3 modulo 4 (i.e., its remainder is 3 when divided by 4) appears an even number of times in
the factorization of m. (See K. Rosen, Elementary Number Theory and its applications Theorem 13.6 on
page 498 [9].)

We begin by considering examples. While 605 = 5 - 112 can be written as a sum of squares (i.e.,
605 = 112 + 222), 275 = 52 - 11 cannot, since 11 divided by 4 leaves a remainder of 3 and only appears
in our factorization an odd number of times. Therefore, \/ﬁ is the measure of a distance between two
points in our integer lattice if and only if m is a non-negative integer and every prime factor of m that is
congruent to 3 modulo 4 appears an even number of times in m’s factorization. Every integer as well as
numbers like /605 = 111/5 (e.g., the distance between (0, 0) and (11, 22)) are such distances. Whereas
V275 = 54/11 is not.

Wait... Are we saying that using our integral lattice some +/integer lengths are constructible and
some are not? Yes. For instance, while an infinite number of values are constructible (e.g., V1,2, /4,
V5, V8, /9, v/10), an infinite number are not (e.g., v/3, v/6, v/7,). In fact, equally many +/integer are
constructible as are not!

Now suppose we are considering distances between points with rational coordinates on our densely
crowded cloud, Q2. These are distances of the form d = v/m? + n? where m and n are rational numbers,
say m = a/cand n = b/c (we can always give a pair of fractions a common denominator). What rational
numbers, say p/q, can be expressed as m? + n? = (a* + v?)/c*? Since (a® + b*/c*) = p/q = pq/¢?,
we want to know if, given integers p and ¢ # 0, we can find integers a, b, and ¢ such that pgc® =
(a® +b*)¢* = (aq)? + (bg)?. Recall that every prime factor of pgc? that is congruent to 3 modulo 4 must
appear an even number of times. Since c is squared (all its prime factors appear an even number of times),
this focuses on demanding pq’s prime factors comply. In other words, pg must be a sum of squares of
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integers. Conversely, if pg = 2>+ 42, then p/q = pq/q* = (2> +y?)/q*> = (x/q)* + (y/q)*. In summary,
\/]% represents a distance between two points in Q2 exactly when /Pq represents a distance between
two points in Z2.

Ugh. This means that infinitely many \/1% or v/rational are still not constructible. It also means
that, for a, b € Q, axz? + b = 0 is generally not solvable in Q. (Still, we have made some progress.)

4 Circular Reasoning
Let us flip the last section’s question on its head.

Question 4 Given a point in 7.2, what points can we reach when moving an integer distance away? Or;
given a point in Q% what points can we reach when moving a rational distance away?

The answer to these questions is we can reach any point on a circle whose center is a point in Z?
(respectively, Q?) and whose radius is a non-negative integer (respectively, a rational number). For
example, (7,116 — 72) is distance 4 away from (0,0). (Ahh. Did you notice our slick trick? We
introduced a new tool. In addition to the straightedge, we now have a compass to make circles and arcs.
Very sneaky.)

Now we have not really constructed all these points since constructed points have to be determined
by intersections. But even so, there are many points we still cannot reach in this way. For example,
(v/2,0) is not an integer distance away from any point (a,b) € Z2. Why? The distance would be

d= \/(\/§ —a)2+ b= Va2 + b2 + 2 — 24/2a. If d were an integer, then so would be d? = (a®+b* +

2) + (—2a)v/2. Without fully justifying this, we necessarily must then have a = 0 (so the square root
part does not appear).> Then d?> = b? + 2 and such an equation has no integer solution.® It turns out that
many (no, most) (no, virtually all) points, (y/integer,0), are unreachable as an integer distance away
from (0,0). Without further exploring this, we can also state that infinitely many points, (y/integer,0),
are unreachable when moving a rational distance away from points in Q2.

Knowing that we cannot reach infinitely many points (y/integer, 0) in this manner, we consider more
that are reachable by requiring that our point is a integer (respectively, rational) distance away from two
lattice points in Z? (respectively, Q?). As seen in Figure 2, this would be tantamount to intersecting
a pair of circles whose centers are integral (or rational) lattice points (and which pass through at least
one other lattice point). Avoiding the voluminous complexity of fully unpacking this, we can see that
the coordinates of points of intersection show up as solutions of a pair of equations of the form: (z —
a)*>+ (y —b)? = 2 and (x — p)* + (y — q)> = r% If we solve such equations (for example, using
“allvalues(solve({(z — a)*+ (y — b)* = %, (x — p)* + (y — ¢)* = r*}, {z,y}))” in Maple), then we see

21t turns out that 1 and /2 are linearly independent when working over the rational numbers, so x +yv/2 = v + w+/2 (for
rational numbers z, y, v, w) implies = v and y = w. In our equation, we had d? + 01/2 =interger+(—2a)v/2 so 0 = —2a.

3Why? Divide any integer by 4 and keep the remainder (i.e., work “mod 4”). One gets 0, 1, 2, or 3. Squaring, one gets
02=0,12=1,2%2 =4 =0 (mod 4), or 32 = 9 = 1 (mod 4). Squares are either equal or differ by 1 (working mod 4). Thus
squares of integers can never differ by 2.
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that solutions are of the form rational + v/ rational. As for which rational numbers can appear in such
a solution, this depends on whether we allow integer or rational coordinates as starting points.

Question 5 Given two points in 72, draw a circle centered at one of those points which passes through
the other point. Next, draw a line passing through two points in 7. Assuming the circle and line intersect,
what kinds of coordinates does such a point of intersection have?

While this is again too complex to fully unpack, once again we see that points of intersection have
coordinates which solve equations of the form: (z — a)? + (y — b)? = ¢ and px + qy = r. It turns out
that we still get numbers of the form rational + v/ rational (for some but not all rational numbers).

Regarding solvability, we can solve ax + b = 0 for a,b € Q (with a # 0) and we can solve some
equations of the form axz? + b = 0. But given a,b € Q (with a # 0), ax® + b = 0 may still require
solutions that are out of our reach.

S Repeat

The next natural thing to consider is repeating our operations. We can draw lines and circles through
previously constructed points and consider intersections of such to be new constructed points. It turns
out that several of our previous questions were too granular, too detailed. If we allow ourselves to freely
iterate, we can more readily see what kinds of numbers we can construct.

When defining constructible points and numbers, one usually starts with just two points (not a whole
lattice) and calls them (0, 0) (the origin) and (1,0). We then proceed to use two tools, a compass and
a straightedge, to build up new points as intersections of circles and lines. If we draw a line with a
straightedge through these initial points and then draw a circle centered at (0,0) and passing through
(1,0), using a compass, we will get two points of intersection — one of them new! These are (+1,0). By
then drawing circles centered at (1, 0) and passing through (0, 0), we can construct (£2, 0) (see Figure
2). It should not be difficult to imagine that we can now construct all points on the horizontal axis whose
coordinate is an integer.

Another standard construction allows us to raise a perpendicular to a line that passes through a point
on that line (see Figure 2). This allows us to create a vertical axis which intersects with our first circle at
(0, £1). We can then repeatedly draw circles and get all points on the vertical axis whose coordinates are
integers. Creating lines perpendicular to axes through these points allows us to construct all of our lattice
points in Z2. So with the aid of our two tools (i.e., straightedge and compass) and multiple iterations, we
need only two points to begin our process.

In summary, beginning with only the two points (0, 0) and (1, 0) and using a straightedge and compass
(allowing us to construct parallel and perpendicular lines), we can build up the entire lattice Z>. .. and so
much more. In fact, we can now construct /z, where z is any non-negative integer. See Figure 3 (and
experiment with our our hyperlinked Iterated Integer Square Roots tool in the footnote*). Notice using

4Use Maple to animate Figure 3: https://maple.cloud/app/6198229031321600/Iterated+Integer+Square+Roots?key=6C99
D4D7477B447B851C8C88FC22C5B33ED6119483064DA1A7110AAC5C2CI1E6
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Figure 2: Constructing 2 € Z from 0 and 1 and Raising a Perpendicular.

the (constructible) lines y = 0 and y = 1 and drawing a circle (centered at (0,0)) passing through
(1,1), we construct /12 + 12 = /2 on the horizontal axis y = 0. Then, raising a perpendicular we
can construct (1/2,1). Drawing a circle (centered at (0,0)) passing through that point, we construct

\/ (\/5)2 + 12 = /3 on the horizontal axis. Continuing this process, we get V3, V4, etc. (Again, we are
making more progress, filling in previous gaps like \/3,v/6,\/7, etc.)

1 JZ V3 JE 5 Je JT Y8 J9 J10 1112131415
v

Figure 3: Constructing Square Roots by Iterating.

Let us re-identify our points (a,b) in Z? with complex numbers z = a + bi in Z[i] (the Gaussian
Integers). Given two complex numbers z = a + bz and w = ¢ + di, standard constructions allow us to
construct z + w, z — w, zw, and z/w (if w # 0). This means that our collection of constructible numbers
is closed under addition, subtraction, multiplication, and division (not by zero). The technical name for
such a number system is a field. For example, the rational, real, and complex numbers are fields but the

38



The Electronic Journal of Mathematics and Technology, Volume 20, Number 1, ISSN 1933-2823

@
(a+1,0)

(a,0)

Figure 4: Bisecting an Angle and Computing a Square Root.

integers (lacking division) are not.

Now if we are limited to the operations of addition, subtraction, multiplication, and division, and we
started with (1,0) = 1 4 0i = 1, it would result in producing only the rational numbers Q. If we also
included i = /—1, we could produce Q[i] = {a + bi | a,b € Q}.> When we only allowed ourselves to
draw and intersect lines (starting with our lattice Z* = Z[i]), this was our resulting collection of numbers:
Q* = Qld.

However, constructible numbers allow another operation that spills outside rational numbers: we can
take square roots. For those unfamiliar with square roots of complex numbers, we first put our complex
number in polar form (just like polar coordinates): z = r cos() + rsin(f)i so that r (i.e., the modulus)
is the distance from the origin to z and 6 (i.e., the argument) is the angle swept out by 2. Then the square
roots of z are + (\/77 cos (g + /rsin (g 1 . To determine a square root, we need to be able to bisect an
angle, 0, and find the square root of a non-negative real number, r. There are standard constructions to
accomplish these tasks (see Figure 4). Now, our collection of constructible numbers is also closed under

square roots (even for negative quantities and stranger complex numbers).
24123
+T + +/—17. Using

rationals as a starting point (or we could just use 0 and 1), any number built from a finite number of steps
of addition, subtraction, multiplication, division (not by zero), and taking square roots is constructible.
The collection of all such numbers is the field of constructible numbers. If we intersect this collection with
the real numbers (i.e., project our points onto the horizontal axis), we get the field of real constructible
numbers.

We now have access to a world of new numbers such as 1 — 41/3 and

Question 6 Does this give us all numbers? Can we get numbers like cube roots or w?

In the nineteenth century, as abstract algebra developed and studied fields of numbers, it clarified
exactly what numbers could or could not be constructed. Since our constructions build from the rational
operations and square roots, any constructible number is the root of a polynomial with integer coefficients.
In fact, it must be a root of such a polynomial whose degree is a power of 2.

SThis field, Q[], is the field of fractions of the Gaussian integers, Z[i].
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Providing a little more detail, let us consider how we are constructing our points (identified with
complex numbers). Given already constructed points, we draw lines through those points and circles
centered at one such point and passing through another. Equations of such lines and circles are of the
forms azx + by = cand (x — a)? + (y — b)* = ¢? where a, b, and c are previously constructed numbers.
Without writing down all of the details, notice that intersections are solutions of linear or quadratic
equations such as az? 4+ bz + ¢ = 0 with a, b, and ¢ constructible. It turns out that roots of such quadratic
equations coincide with roots of polynomials whose coefficients are integers and whose degree is a power
of 2 (e.g., degree 1, 2, 4, 8, etc.). This is most easily (but not necessarily simply) explained using some
mathematical field theory. Again, we point the interested reader with some abstract algebra background
to [7] or [8].

Immediately, transcendental numbers like 7 and e are definitely off the table as constructible numbers.
Why? Transcendental numbers are, by definition, numbers that are not roots of any nonzero polynomial
with integer coefficients.® Putting this together, we have ruled out squaring the circle. Specifically, given
a square of area 1, we cannot construct a circle of area 1. Why? We would need to be able to construct a
circle with radius /7. Since 7 and thus /7 are transcendental, this construction is impossible.

Algebraically, intersecting lines and circles amounts to solving linear and quadratic equations. There-
fore, constructible numbers cannot access the world of cube roots and other more complicated things.
(Umm... For now. We will later return to this for more consideration.) Another ancient problem asks
one to double the cube: given a cube of volume 1, construct a cube of twice the volume (i.e., volume 2).
However, doing so would require us to construct such a cube’s side of length /2. Such a number is not
constructible since, while it is the root of a integer coefficient polynomial of degree 3 (i.e., 23 — 2), it is
not a root of an integer coefficient polynomial whose degree is a power of 2.

It turns out that while we can extract square roots (and repeating can extract fourth, eighth, etc. roots),
these constructions can never extract a root of an irreducible cubic polynomial. In particular, they cannot
construct cube roots of integers, unless they are perfect cubes (e.g., v/8 = 2). Likewise, we cannot extract
third, fifth, sixth, seventh, etc. roots.

Related to this, while we can bisect any given angle, we cannot trisect all angles. In particular, the
60° angle is constructible (consider a special triangle to see why), but it is impossible to construct a 20°
angle. It turns out that if we could, we could construct the numbers cos(20°) and sin(20°), but these are
roots of irreducible cubics with integer coefficients (and thus not constructible).

In the end, constructible numbers can look quite complicated, like \8/ \/Tg — W, but they are still
pretty limited when we consider the vast scope of all real or complex numbers. In fact, the constructible
numbers are a subfield of all algebraic numbers (i.e., numbers that are roots of nonzero polynomials with
integer coefficients). This is because constructible numbers are roots of polynomials (with integer coef-
ficients) whose degree is a power of 2 and algebraic numbers are roots of a polynomials of ANY degree.
Nevertheless, both the algebraic and constructible numbers are infinite collections but only countably
infinite. On the other hand, the real and complex numbers are uncountable (specifically continuum in

6We point the interested reader to [5] for more about transcendental numbers. Alternatively, consider [4] for an elementary
introduction to transcendental numbers and [2] for an explanation of why functions such as sine and the natural logarithm are
called transcendental functions.
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cardinality).’

V1438 g2y 16—{‘/1+‘/Tg x4 v/53 = 0 are

solvable in the field of constructible numbers. However, a simple equation like 22 — 3 = 0 is not!!!

Ahhh, but why? Why are things as simple as cube roots not constructible in the constructible num-
bers? On the most simple and intuitive level, let’s just say that, using a compass and straightedge,
these numbers are constructed “on the flat” or in a plane. Think about the limitations of a flat square
on the page.® However, cubed numbers and cubed roots would most intuitively be contextualized in
3-dimensional space and working with polynomials of degree 3.

6 The Long and Short of It (i.e., A Summary)

Through both review and extension, we provide some notes regarding some of our current findings (points
1-3). We then mention that how our findings generalize to higher dimensions (points 4-6).

1. Intersections of lines through points in the lattice Z?* construct al/l points in a dense cloud of points
with rational coordinates Q2.

2. In our lattice of points with integer coordinates, Z?, restricting line segments to vertices at points
(integer, integer), some +/integer lengths are constructible.

3. Beginning with our lattice of points with integer coordinates and allowing iterative constructions,
all v/rational lengths are constructible.

4. If we move to higher dimensions, intersecting (hyper-)planes through points with integer coordi-
nates (i.e., hyper-planes through points in the lattice Z") will yield points with rational coordinates
(i.e., points in Q™).

5. Lengths of line segments between points with integer coordinates in Z* will yield \/integer for
any integer that is the sum of three squares: a* + b + 2. Interestingly, according to Lagrange’s
Four Squares Theorem” (see, e.g., [9], Theorem. 13.8 on page 500), every non-negative integer can
be written as a sum of four integer squares: a* + b* + ¢* + d?. Therefore, considering lengths of
line segments between points in Z" for n > 4, every /integer shows up!

6. Beginning in Z" for n > 3 (which is beyond the traditional realm of constructible numbers) and
allowing iterative constructions of hyper-planes (passing through previously constructed points)

e point the interested reader to [6] for an explanation and exploration of sizes of infinity (i.e., cardinality) and to [3] for
an exploration of the relationships between various number systems such as rational, algebraic, and complex numbers.
8For an enjoyable romp “on the flat”, read E. Abbott’s Flatland: A Romance of Many Dimensions [1].
According to Rosen [9], Fermat had discovered the Four Squares Theorem, but had not published it; Euler tried, but
wasn’t able to prove it; Lagrange was the first to publish (1770) a proof.
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and hyper-spheres (centered at and passing through a pair of previous constructed points), we get
a dense cloud of points in n-space. However, the coordinates of these points are still nothing truly
new — the coordinates are just real constructible numbers!

So, what does all of this mean? Although constructible numbers are countably infinite, an equally
infinite (in size) subset of algebraic numbers are absent from the constructible numbers, since algebraic
numbers contain roots of integral polynomials of all degrees whereas the constructible numbers only
include roots of integral polynomials whose degrees are of a power of 2. Many (in fact, most) complex
numbers are unreachable. Moreover, our extensions above reveal that going to higher dimensions does
not produce anything new.

We finish by considering that our choice of tools greatly impacts what numbers (i.e., points) we can
construct. In particular, our compass was assumed to be a collapsing compass. This means that if we
pick it up, it does not stay fixed and open. If we used a non-collapsing compass, we could build in extra
data like being able to transport fixed distances to new points. Likewise, our straightedge just allows us
to draw lines. If we are allow to mark our straightedge, we would have some kind of ruler. If so, again
we could transport distance information to new points. These modifications end up giving us access to
more points than with a collapsing compass and an unmarked straightedge.

7 Student Investigations

We conclude this paper with some investigatory questions for students. These questions were curated for
the student to glean more understanding of constructible numbers and ideas surrounding them.

1. What are (hyper-)planes and (hyper-)spheres?

(a) Two points determine a line and three points a plane. (Usually anyway — when does this not
work?) These are determined by equations of the form az + by = c and az + by + cz = d.
Explore why a hyper-plane in n-space is determined by n + 1 points. What kind of equation
do we expect in general?

(b) A hyper-sphere is the collection of all points equidistant (this is the radius) from a particular
point (this is the center). What does this look like in 2-space? In 3-space? What kind of
equations describe such shapes? Do all quadratic equations do so?

(c) Starting with an n-dimensional grid (Z™) and intersecting hyper-planes determined by those
points will just get us Q". Allowing intersections of hyper-spheres and hyper-planes will still
only allow us to construct points whose coordinates are real constructible numbers — we get
essentially the same kind of stuff as we did in the plane. Explain this idea.

2. In the paper, we considered points, lengths, areas, and volumes as numbers. What others “mea-
sures” could be considered numbers? Explain why and how. (Hint) What if angle is a number?

3. Explain the following statements:
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(a) A real number x is constructible (via straightedge and compass) if and only if the field Q(z)
over Q has degree a power of two, i.e., [Q(z) : Q] = 2™ for some m > 0.

(b) Any angle or length whose minimal polynomial over Q is of a degree that is not a power of
two 1s not constructible.

(c) A regular n-gon is constructible if and only if n = 2% - p, - - - p,,, where p; are distinct Fermat
primes.

4. Examine Origami folding.

(a) Examine the numbers that are constructible through Origami folding.

(b) Did you find numbers different from or in addition to the constructible numbers? Explain.

5. Four ancient tools have connections to our discussions: the straightedge and compass, the framing
square, and the Archimedean Spiral. Investigate all the lengths or angles constructible with a
framing square and with an Archimedean spiral. Compare and contrast numbers constructed using
these tools.

6. We could not construct v/2 using a compass and straightedge. However, investigate the “nuesis
method” for constructing /2. In particular, consider our Construct Cube Root of 2 worksheet
linked in the footnote.'”

7. Consider the table below. Write a historical term paper connecting, comparing, and contrasting
the “Tools/Curves” listed in the following table and their respective “Typical New Constructible
Numbers.”

I0rhis worksheet is accessible on the Maple cloud at https://maple.cloud/app/6240724865908736/Construct+Cube+Root+
of+27%key=CA26EC FA8F8244CA9FE30DA34C43B6A378C94433A81E4710ACFOECF789299515
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Tool / Curve Historical User Algebraic or Tran- Typical New Con-
scendental Power structible Numbers

Straightedge + Greeks Quadratic only (2") T

Compass

Neusis / Framing Greeks, Archytas Cubic (3™) NEE

Square

Archimedean Spiral /  Archimedes, Cubic Jr, cos(20°)

Conchoid / Cissoid / Nicomedes, Diocles

Trisectrix

Lemniscate or Quartic ~ Bernoulli, 17th century  Quartic (4) r

Algebraic Curve

Higher-Degree Modern Algebraic Arbitrary Algebraic Any Algebraic root

Algebraic Curves geometry degree

Quadratrix of Hippias  5th century BCE Transcendental Constructs 7; squares

the circle (in principle)
Logarithmic Spiral, 17th century Transcendental Involves e, 7,
Cycloid logarithms
8. Enjoy life, mathematics, and numbers.
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